Irina V. Vedernikova and Achiel Haemers

Department of Pharmaceutical Chemistry, University of Antwerp (UIA). Universiteitsplein, 1, 2610, Antwerp, Belgium

Yuryi I. Ryabukhin

Department of Organic and Physical Chemistry, University of Rostov/Don, Zorge, 105, Rostov/Don, 344113 Russia Received August 28, 1998

The synthesis of N^1 -substituted 4-pyrimidones is described. These compounds were prepared from their corresponding 4-oxopyrimidinium perchlorates or from a reaction of a primary amine with a N-acyl-\u00a3ketoamide.

J. Heterocyclic Chem., 36, 97 (1999).

Pyrimidines are important heterocycles in biochemistry and medicinal chemistry. They represent 50% of the DNA and RNA bases and occur in a series of therapeutically active agents. We were particularly interested in 4-pyrimidones with N^1 -aryl or N^2 -alkyl substitution as possible building blocks in drug design and development. Most cyclization pathways, described in literature, afford N³-substituted analogues [1-8]. An exception is the reaction between N-aryl substituted amidines and ethyl acetylenecarboxylate [4]. Alkylation of 4-pyrimidones, in contrast, gives usually N³-substituted derivatives [10-13]. N³-Substituted pyrimidones can also be obtained when 4-aminopyrimidines are alkylated and subsequently hydrolyzed [9].

In a research program on the reaction of 4-oxo-1,3oxazinium perchlorates with amines we found that a 4-oxooxazinium salt afforded the corresponding N1-substituted 4-oxopyrimidinium salts. The latter could be deprotonated to the non-cationic 4-pyrimidone by treatment with sodium bicarbonate solution. We already reported some pharmacological results, obtained with compounds from the reaction between oxazinium cations and aminophenols [14]. In this article we report the general feasibility of this synthetic pathway to 4-pyrimidones. Moreover, we report on an alternative method we have developed during these investigations.

Starting material in our synthetic scheme were phenylacetamides 1a-b. The compounds are C,N-acylated with boron trifluoride in acetic or propionic anhydride into N-acetyl- or N-propionyl-β-ketoamides **2a-c** [15] (Table 1).

These β-ketoamides undergo cyclisation into 4-oxo-1,3-oxazinium perchlorates 3a-c (Table 2) when treated with perchloric acid and acetic anhydride in chloroform. This reaction affords 2,6-symmetrically substituted 4-oxo-1,3-oxazinium ions. Oxazinium ion 3d with different 2,6-substitutions can be obtained from an anhydride

Table 1 N-Acyl-2-aryl-β-ketoamides 2

Compound	mp (°C)	Yield (%)	ir, (cm ⁻¹) [a] NH	¹ H nmr, (ppm) [b]				
2a	117-119	90	3360	1735 1720 1700	2.1 (s, 3H, CH ₃), 2.2 (s, 3H, CH ₃), 7.2 (s, 5H, phenyl)			
2b [c]	164	70	3260	1748 1742	2.0 (s, 3H, CH ₃), 2.5 (s, 3H, CH ₃), 7.1-7.2 (m, 4H, phenyl)			
2c	108-109	78	3295	1745 1725 1700	1.0 (t, $J = 7.6 \text{ Hz}$, 3H, CH_2CH_3), 1.1 (t, $J = 7.0 \text{ Hz}$, 3H, CH_2CH_3), 2.5 (q, $J = 7.0 \text{ Hz}$, 2H, CH_2CH_3), 2.5 (q, $J = 7.6 \text{ Hz}$, CH_2CH_3), 2.0 7.3 (s, 5H, phenyl)			
2c	108-109	78	3295	1745 1725 1700	1.0 (t, $J = 7.6 \text{ Hz}$, $3H$, CH_2CH_3), 1.1 (t, $J = 7.0 \text{ Hz}$, $3H$, CH_2CH_3), 2.5 (q, $J = 7.0 \text{ Hz}$, $2H$			
2d [d]	111-113	58	3365	1740 1720 1700	1.1 (t, $J = 6.9$ Hz, 3H, CH_2CH_3), 2.1 (s, 3H, CH_3), 2.4 (q, $J = 6.9$ Hz, 2H, CH_2CH_3), 7.3 (s, 5H, phenyl)			

[a] Potassium bromide. [b] Deuteriochloroform, tetramethylsilane as the internal standard. [c] 13C nmr (deuteriochloroform): 8 20.6 (e), 24.7 (k), 25.4 (e), 29.1 (k), 65.8 (k), 103.9 (e), 115.9 (e) (d, $J_{CCF} = 21.6 \text{ Hz}$), 116.8 (k), 127.6 (e), 127.7 (k), 131.6 (e) (d, $J_{CCCF} = 8.2 \text{ Hz}$), 133.4 (k) (d, $J_{CCCF} = 8.2 \text{ Hz}$), 162.8 (d, J_{CF} = 249.5 Hz), 162.9 (d, J_{CF} = 249.5 Hz), 169.5, 170.3, 171.7, 172.2, 177.8, 202.6. [d] For the preparation we used the 4-oxooxazinium perchlorate 3e.

Table 2
4-Oxo-1,3-oxazinium Perchlorates 3

Compound	mp	Yield	ir (cm ⁻¹) [a]	¹ [a] ¹ H nmr, ppm [b]					
•	(°C)	(%)	NH	C=O	C=C				
3a	190	96	3330	1755	1670 1610	2.6 (s, 3H, 6-CH ₃), 2.7 (s, 3H, 2-CH ₃), 7.3 (s, 5H, phenyl)			
3b [c]	203	92	3340	1735	1665 1610	2.4 (s, 3H, 6-CH ₃), 3.0 (s, 3H, 2-CH ₃), 7.1-7.3 (m, 4H, phenyl)			
3c	193	95	3360	1755	1660 1605	1.3 (t, $J = 7.4 \text{ Hz}$, 3H, 6-CH ₂ CH ₃), 1.6 (t, $J = 6.7 \text{ Hz}$, 3H, 2-CH ₂ CH ₃), 2.7 (q, $J = 7.4 \text{ Hz}$, 2H, 6-CH ₂ CH ₃), 3.3 (q, $J = 6.7 \text{ Hz}$, 2H, 2-CH ₂ CH ₃), 7.3-7.4 (m, 5H, phenyl)			
3d	194	46	3280	1750	1655 1610	1.1 (t, $J = 6.7 \text{ Hz}$, 3H , $2\text{-CH}_2\text{CH}_3$), 2.2 (s, 3H , 6-CH_3), 2.9 (q, $J = 6.7 \text{ Hz}$, 2H , $2\text{-CH}_2\text{CH}_3$), 7.0 (s, 5H , phenyl)			
3e	177	50		1720	1660 1610	2.2 (s, 3H, 6-CH ₃), 2.4 (s, 3H, 2-CH ₃), 4.0 (s, 3H, OCH ₃), 5.1 (s, 1H, C=CH), 7.1-7.3 (m, 4H, phenyl)			

[a] Nujol. [b] Trifluoroacetic acid, tetramethylsilane as the internal standard. [c] 13 C nmr (trifluoroacetic acid): 19.9 (q, J_{CH} = 132.6 Hz), 22.7 (q, J_{CH} = 135.3), 119.5 (dd, J_{CCF} = 22.5 Hz, J_{CH} = 166.8 Hz), 125.3, 125.6, 134.7 (d, J_{CCCF} = 7.8 Hz), 159.7, 167.4 (d, J_{CF} = 253.2 Hz), 174.2, 183.0.

Table 3
4-Oxopyrimidinium Perchlorates 6 [a]

Compound	\mathbb{R}^1	\mathbb{R}^2	R^3	Ŗ ⁵	R ⁶	mp (°C)	Yield (%)
6/1	Н	CH ₃	Н	Ph	CH ₃	N.D.	72
6/2	H	CH ₃	H	p-FPh	CH ₃	N.D.	45
6/3	CH ₃	CH ₃	Н	Ph	CH ₃	N.D.	40
6/4	CH ₂ Ph	CH_3	H	Ph	CH ₃	147	56
6/5	Ph ²	CH_3	Н	Ph	CH ₃	260	80
6/6	p-CH ₃ OPh	CH ₃	H	Ph	CH ₃	185 [b]	61
6/7	o-HOPh	CH ₃	Н	Ph	CH ₃	167	94
6/8	m-HOPh	CH ₃	H	Ph	CH_3	174	96
6/9	p-OHPh	CH ₃	Н	Ph	CH ₃	177	100
6/10	p-OHPh	CH ₃	Н	$p ext{-} ext{FPh}$	CH ₃	315 [b]	68
6/11	o-HOOCPh	CH ₃	Н	Ph	CH ₃	300 [b]	78
6/12	m-HOOCPh	CH ₃	Н	Ph	CH ₃	242 [b]	83
6/13	p-HOOCPh	CH ₃	Н	Ph	CH ₃	248 [b]	99
6/14	o-CH ₃ OOCPh	CH ₃	H	Ph	CH ₃	202	63
6/15	o-CH ₃ OOCPh	C_2H_5	H	Ph	CH ₃	220	23
6/16	o-CH ₃ OOCPh	C_2H_5	H	Ph	C ₂ H ₅	275	11
6/17	m-H ₂ NPh	CH ₃	H	Ph	CH ₃	160	71 40
6/18	p-H ₂ NPh	CH ₃	H	Ph	CH ₃	167	
6/19	p-(CH ₃) ₂ NPh	CH ₃	Н	Ph	CH ₃	241	46 40
6/20	p-H ₂ NSO ₂ Ph p-NO ₂ SP	CH ₃	Н	Ph	CH ₃	264	40
	7 10251						
6/21	Ž, Ž	CH ₃	Н	Ph	CH ₃	260	65
	CH ₃ O N						
6/22	p-HOOC(m-OH)Ph	C_2H_5	Н	Ph	C_2H_5	218	31
6/23	p-CH ₃ OOCPh	CH ₃	H	Ph	CH ₃	229	39
6/24	o-C ₂ H ₅ OOCPh	C_2H_5	Н	Ph	CH ₃	N.D.	44
6/25	Ph	CH ₃	o-CH ₃ O Ph	H	CH_3	213	52
6/26	p-HOPh	CH ₃	o -CH $_3$ OPh	Н	CH ₃	196	40
	p−NO ₂ SP						
6/27	CH ₃ O N	CH ₃	o-CH ₃ OPh	Н	CH ₃	251	35

[a] All compound were crystallized from acetic acid (with a drop of perchloric acid). [b] With decomposition. [c] The product was prepared from 7.

and β -ketonitrile 4 [16]. N^3 -Aryl 4-oxo-1,3-oxazinium perchlorate 3e can be synthesized from N-aryl- β -ketoamides 5 in acetic anhydride. Analytical data of compounds 3 are summarized in Table 2.

The above prepared 4-oxo-1,3-oxazinium perchlorates 3, dissolved in acetic acid, react with aliphatic and aromatic amines, affording the corresponding N^1 -substituted 4-oxo-pyrimidinium perchlorates 6 (Tables 3 and 4) (Scheme 2).

Table 4

	Analytical Da	ata on 4-0	Oxopyri	midinium I	Perchlo	rates 6	
Compoun	d	ir (cm ⁻¹)		Elem	ental a	nalysis (%) [a]
•	NH	C=O	C=C	C	Н	N	Cl
6/1	3180	1720	1690	47.99	4.00	9.71	
	2100	1,20	1620	(48.09)			
			1565		, ,	, ,	
6/2 [b]	3180	1720	1690	-	•	-	-
			1623	-	-	-	-
6/3	3190	1715	1565 1650	49.62	4.79	8.88	11.45
0.0	5170	1715	1600	(49.61)			(11.22)
			1580	, ,	` ,	, ,	·/
6/4	3200	1720	1650	58.41	4.79	7.21	9.07
			1610	(58.39)	(4.90)	(7.17)	(9.07)
6/5 [c]	3280	1720	1580 1650				0.55
U/S [C]	3260	1720	1600	-	-	-	9.55 (9.44)
			1580				(7.77)
6/6 [h]	3270	1705	1650	56.12	5.01	_	8.90
			1610	(56.10)	(4.71)	-	(8.71)
			1520				
6/7	3190	1712	1652	54.90	4.49	6.93	9.09
			1610 1580	(55.10)	(4.34)	(7.14)	(8.93)
6/8	3210	1700	1654	55.30	4.30	7.33	8.95
	5210	1,00	1620	(55.10)			(8.93)
			1585	(,	(,	((0.50)
6/9 [c]	3200	1709	1648	55.13	4.21	7.21	8.98
			1605	(55.10)	(4.34)	(7.14)	(8.93)
4/10 (a)	2220	1700	1580				
6/10 [d]	3330	1700	1680 1640	-	-	-	-
			1600	-	•	-	•
6/11 [f]	3460	1720	1660	54.26	4.01	-	8.39
		1700	1610	(54.29)			(8.33)
			1580				
6/12	3360	1715	1650	54.30	4.14	•	8.27
		1700	1605	(54.29)	(4.05)	•	(8.33)
6/14	3180	1730	1595 1650	55.30	4.47		7.99
W 14	3100	1710	1610	(55.29)		-	(8.06)
			1580	(/	(,		(0.00)
6/15	3200	1725	1650	56.13	4.70	-	7.81
			1610	(56.25)	(4.68)	-	(7.81)
<i>(11)</i>	2220	1745	1600	57.10	5 10	. 10	
6/16	3230	1745 1710	1660 1610	57.12 (57.14)		6.12	7.71
		1710	1600	(37.14)	(4.97)	(0.00)	(7.57)
6/17	3345	1705	1650	55.25	4.63	_	9.0
	3515 (NH ₂)		1600	(55.24)	(4.60)	-	(8.95)
			1560				
6/18	3350	1700	1630	55.31	4.59	-	8.97
	3415 (NH ₂)		1600	(55.24)	(4.60)	-	(8.95)
6/19	3390	1690	1645	67.58	6.12	13.33	10.01
	5570	1070	1620	(67.60)			
6/20 [g]	3300	1720	1650	47.08	3.68	6.79	7.79
			1580	(47.42)	(3.95)	(7.03)	
6/21	3070	1715	1645	52.30	4.02	-	8.31
		1690	1610	(52.29)	(3.89)	-	(8.02)
6/22	3200	1730	1595 1630	57.61	5.04	6 10	
V1 24	3200	1150	1610	57.61	5.06	6.19	-
		1700	1580	(57.14)	(4.97)	(6.06)	_
					,	. ,	

Table 4 (continued)

Compound		ir (cm ⁻¹)		Elem	ental ana	lysis	(%) [a]
•	NH	C=O	C=C	C	Н	N	Čľ
6/23	3210	1710	1620	48.05	4.23	-	6.42
			1600	(47.97)	(3.90)	-	(6.29)
6/24	3320	1740	1660	57.19	5.03	-	7.61
		1715	1610	(57.14)	(4.97)	-	(7.57)
			1595				
6/25		1731	1663	56.32	4.74	-	8.89
			1610	(56.10)	(4.71)	-	(8.71)
			1600				
6/26		1727	1650	53.91	4.45	-	7.98
		1615	1580	(54.03)	(4.50)	-	(8.29)
6/27	3200	1750	1630	47.39	3.99	-	5.98
			1600	(47.52)	(4.04)	-	(5.98)

[a] Calculated values in parentheses. [b] ¹H nmr (trifluoroacetic acid): δ 2.4 (s, 3H, 6-CH₃), 3.0 (s, 3H, 2-CH₃), 7.2-7.3 (m, 4H, phenyl); ¹³C nmr (trifluoroacetic acid): δ 19.9 (q, J_{CH} = 132 Hz), 20.8 (q, J_{CH} = 134.5 Hz), 119.2 (dd, J_{CH} = 166.18 Hz, J_{CCF} = 22.1 Hz), 126.9, 128.8, 134.5 (d, J_{CH} = 163.7 Hz), 155.7, 164.7, 165.4, 169.1 [c] ¹H nmr (trifluoroacetic acid): δ 1.6 (s, 3H, 6-CH₃), 2.2 (s, 3H, 2-CH₃), 7.0 (s, 5H, phenyl), 7.2 (s, 5H, N-phenyl). [d] ¹H nmr (trifluoroacetic acid): δ 1.7 (s, 3H, 6-CH₃), 2.2 (s, 3H, 2-CH₃), 6.7-7.1 (m, 9H, phenyl). [e] ¹³C nmr (trifluoroacetic acid): δ 21.67 $(q, J_{CH} = 132.6 \text{ Hz}), 23.4 (q, J_{CH} = 135 \text{ Hz}), 119.4 (dd, J_{CH} = 166.7 \text{ Hz}, J_{CCF})$ = 22.5 Hz), 128.2, 130.4, 131.0 (d, J_{CH} = 163.2 Hz), 132.1, 134.6 (d, J_{CH} = 164.2 Hz), 159.8, 161.0, 167.9, 168.0, 169.1. [f] ¹H nmr (trifluoroacetic acid): δ 1.6 (s, 3H, 6-CH₃), 2.3 (s, 3H, 2-CH₃), 6.7-7.1 (s, 9H, phenyl). [g] ¹H nmr (trifluoroacetic acid): δ 1.7 (s, 3H, 6-CH₃), 2.3 (s, 3H, 2-CH₃), 7.5-8.1 (m, 9H, phenyl). [h] 1 H nmr (trifluoroacetic acid): δ 1.7 (s, 3H, 6-CH₃), 2.2 (s, 3H, 2-CH₃), 3.8 (s, 3H, OCH₃), 6.9-7.2 (m, 9H, phenyl). [i] The other pyrimidinium cations are ¹H-nmr characterized as their corresponding 4-oxo-1,4-dihydropyrimidines 8 (see Table 7).

Table 5
4-Oxo-1,4-dihydropyrimidines 8

Compound	\mathbb{R}^1	\mathbb{R}^2	R ⁵	R ⁶	mp (°C)	Solvent	Yield %	
•					• • •		В	Α
8/1	Н	CH ₃	Ph	CH ₃	224	EtOH	70	_
8/2	H	CH ₃	p-FPh	CH ₃	276	C ₆ H ₆	58	_
8/3	CH ₃	CH ₃	Ph	CH ₃	205	CHCl ₃	35	
8/4	Bn	CH ₃	Ph	CH ₃	211	AcOEt	62	_
8/4 ^A	Bn	CH ₃	p-FPh	CH ₃	196	AcOEt	77	76
8/5	Ph	CH ₃	<i>p</i> -14111 Ph	CH ₃	170	C ₆ H ₆	- '	99
8/6	o-OCH₃Ph	CH ₃	Ph	CH ₃	216	AcOEt	63	_
8/7	o-HOPh	3	Ph	CH ₃	312 [a]	EtOH	93	94
8/8	<i>o</i> -HOPh <i>m</i> -HOPh	CH ₃	Ph	CH ₃	299 [a]	EtOH	95	60
		CH ₃	Ph	CH ₃	302 [a]	AcOEt	84	97
8/9	p-HOPh	CH ₃	p-FPh	CH ₃	>260	i-PrOH	50	-
8/10	p-HOPh	CH ₃	•		279	EtOH	16	78
8/11	o-HOOCPh	CH ₃	Ph	CH ₃	254		53	39
8/12	m-HOOCPh	CH ₃	Ph	CH ₃		CH ₃ CN EtOH	-	100
8/13	p-HOOCPh	CH ₃	Ph	CH ₃	314		18	54
8/14	o-CH ₃ OOCPh	CH ₃	Ph	CH ₃	150	C ₆ H ₆		40
8/15	o-CH ₃ OOCPh	C_2H_5	Ph	C ₂ H ₅	158	EtOH	•	30
8/16	m-H ₂ NPh	CH ₃	Ph	CH ₃	200	CHCl ₃ /hexane	-	
8/17	p-H ₂ NPh	CH ₃	Ph	CH ₃	177	CHCl ₃ /hexane	37	50
8/19	p-(H ₃ C) ₂ NPh	CH ₃	Ph	CH_3	226	AcOEt	-	90
8/20	p-CH ₃ OOCPh	C_2H_5	Ph	C_2H_5	218	C ₆ H ₆	40	40
8/28	o-CF ₃ Ph	CH_3	$p ext{-} ext{FPh}$	CH_3	195	C ₆ H ₆ /hexane	75 70	-
8/29	m-CH ₃ OOCPh	CH ₃	Ph	CH_3	N.D.	C ₆ H ₆	70	63
8/30	p-CH ₃ OOCPh	CH ₃	Ph	CH_3	237	C_6H_6	64	75
8/31	p-C ₂ H ₅ OOCPh	CH_3	<i>p-</i> FPh	CH_3	173	AcOEt	55	
8/32	o-C ₂ H ₅ OOCPh	CH_3	Ph	CH_3	N.D.	C_6H_6	68	
8/33 [b]	cyclohexyl	CH_3	p-FPh	CH_3	179	EtOH		30
8/34	CH ₂ COOEt	CH ₃	Ph	CH_3	202	EtOH		35
8/35	[c]	CH ₃	<i>p-</i> FPh	CH_3	302	EtOH		62
8/36	[d]	CH ₃	p-FPh	CH ₃	179	CH ₂ Cl ₂		85
8/37	[e]	CH ₃	p-FPh	CH_3	215	EtOH		65
8/38	[f]	CH ₃	p-FPh	CH ₃	181	EtOH		58
		-		-				

[a] With decomposition. [b] Purified on a silica column with ethyl acetate: methanol (5/1). [c]
$$R^1 = \frac{1}{N} NH$$
, [d]] $R^1 = \frac{1}{N} NH$, [d]] $R^1 = \frac{1}{N} NH$, [d]] $R^1 = \frac{1}{N} NH$, [d] R

This reaction succeeds under slightly different reaction conditions (ethanol as the solvent) with N^3 -aryl-4-oxo-1,3-oxazinium cation **3e** and affords N^3 -aryl substituted 4-oxopyrimidinium perchlorates **6/25-6/27**.

We tried to obtain 4-oxopyrimidinium salts 6 in a one step cyclization between N-acyl- β -ketoamides 2 and an amine in perchloric acid-acetic acid. This reaction however did not succeed. In a stepwise reaction scheme using the N-arylenamine derivative 7 of the β -ketoamide as an intermediate, we could however obtain the desired 4-oxopyrimidinium perchlorates (Scheme 3). The yields were however very poor and this method can hardly been considered as a general method. Compound 7 was obtained from β -ketonitrile 4 by treatment with an aromatic amine and borontrifluoride-acetic acid and subsequent acylation with acetic anhydride.

Our target N^1 -substituted 4-pyrimidones 8 (Table 5-7) were prepared by treatment of the parent pyrimidinium per-

chlorates 6 with an aqueous solution of sodium bicarbonate.

Although, as mentioned earlier, the concerted cyclization between N-acyl- β -ketoamide 2 and an amide in perchloric acid-acetic acid did not afford 4-oxopyrimidinium cations, we found rather unexpectedly that omitting perchloric acid in this reactions afforded the target 4-pyrimidones 8 in moderate to high yield. This direct cyclization also can be considered as an excellent synthetic method for 8, in case $R^2 = R^6$ (Scheme 2). Treatment of N^3 -aryl 4-oxo-1,3-oxazinium perchlorate with ammonium acetate solution afforded (3H)4-pyrimidone 9.

We observed that when o-aminobenzoic acid or its methyl ester was used as the amine, 4-pyrimidone 8 was obtained in poor yield. We isolated from the reaction mixture the corresponding N-aryl- β -ketoamide 11 (Scheme 4). This reaction can be explained by an initial attack of the amine on the amide carbonyl at the β -ketoamide site and subsequent elimination of the N-acylamide group. This is probably due to steric reasons.

Table 6
4-Oxo-1,4-dihydropyrimidines 8, IR and Analytical Data

Science 2			Table 0			
0 2 ,	4-Ox	o-1,4-dihydr	opyrimidines 8,	IR and Ana	alytical Da	ta
R^{5} R^{3} $R^{2} = R^{6} = Me, R^{3} = H,$		_	•		•	
b, $R^2 = R^6 = Me$, $R^3 = H$,	Compound	ir (cm ⁻¹) C=O	C=C, C=N	Elem C	ental Anal H	ysis (%) N
R^{6} Q^{2} R^{2} $R^{3} = p$ -Fth $R^{3} = R^{6} = Me$, $R^{3} = o$ -CH ₃ OPh, $R^{5} = H$	8/1	1680	1650	72.00 (71.98)	5.98 (6.04)	14.12 (13.99)
· /	8/2	1655	1615	-	-	-
	0/2	1055	1600			
R ⁵ N R ³ R ¹ NH ₂ /AcOH R ⁵ N R ³ NaHCO ₃ R ⁵ N	012	1/05	1565	70.50	5.00	12.10
+ '	8/3	1625	1605	72.58	5.99	13.10
$R^6 \stackrel{\frown}{\bigcirc} R^2$ $R^6 \stackrel{\frown}{\bigcirc} R^2 = H$ $R^6 \stackrel{\frown}{\bigcirc} R^2$			1580	(72.87)	(6.59)	(13.07)
I IMPERIOR AT I	8/4	1620	1607	80.22	4.19	10.01
$CIO_4^ R^1$ (metalog T_1) R^1			1590	(80.27)	(4.25)	(9.85)
3 6 8	8/4 ^A	1623	1600	71.49	5.43	8.58
·			1590	(74.01)	(5.56)	(9.08)
	8/5	1640	1605	78.25	5.86	10.19
OsR ⁶			1595	(78.24)	(5.84)	(10.14)
	8/6	1630	1615	74.18	6.10	9.10
H N R ² Plays (A-O)	0,0	1615	1600	(74.49)	(5.92)	(9.14)
N R ² R ¹ NH ₂ /AcOH		1015		(74.43)	(3.92)	(3.14)
(method B)	0.5	1647	1545	50.54	5.61	0.60
X (minute)	8/7	1647	1610	73.74	5.61	9.60
2			1575	(73.98)	(5.48)	(9.59)
-	8/8	1649	1605	74.14	5.25	9.55
	•		1580	(73.98)	(5.48)	(9.59)
	8/9	1631	1603	73.70	5.39	9.42
Scheme 3			1580	(73.98)	(5.48)	(9.59)
	8/10	1625	1580	68.77	4.92	8.77
OCH ₃ OCH ₃				(69.67)	(4.87)	(9.03)
	8/11	1705	1605	71.17	4.89	8.73
	0,11	1645	1580	(71.25)	(5.00)	(8.75)
NH ₂	8/12	1710	1605	71.22	5.01	8.68
	0/12					
	0/12	1640	1595	(71.25)	(5.00)	(8.75)
	8/13	1710	1590	71.22	4.89	8.73
OCH ₃ BF ₃ /AcOH N CH ₃		1630		(71.25)	(5.00)	(8.75)
$\downarrow \rightarrow \downarrow \xrightarrow{\longrightarrow} \downarrow $ "	8/14	1720	1600	71.96	5.47	8.39
		1630	1580	(71.84)	(5.43)	(8.38)
	8/16	1690	1610	72.89	6.11	7.81
		1625	1580	(72.92)	(6.07)	(7.73)
4 10 7	8/17	1630	1600	74.25	5.90	` <u>-</u> ′
17010 /4 OU				(74.22)	(5.84)	_
HClO₄/AcOH ↓	8/18	1635	1600	74.19	5.85	_
•	0/10	1055	1000	(74.22)	(5.84)	_
	8/19	1630	1600	75.24	6.60	11.60
	0/17	1050	1000			
МН	9/22	1770	1600	(75.23)	(6.58)	(11.80)
】 +	8/22	1730	1600	73.00	6.12	-
$H_3C \nearrow N \nearrow CH_3$	0.400	1630	1580	(72.92)	(6.07)	-
CIO ₄ -	8/28	1630	1595	62.34	3.84	7.58
				(62.98)	(3.89)	(7.73)
l J	8/29	1720	1600	71.88	5.29	8.29
Y		1630	1590	(71.84)	(5.43)	(8.38)
OCH ₃	8/30	1720	1590	71.89	5.36	8.39
6/6		1635		(71.84)	(5.43)	(8.38)
0/0	8/31	1720	1600	68.90	5.25	7.39
			1640	(68.84)	(5.23)	(7.65)
	8/32	1720	1600	(00.0.)	(0.20)	(,,,,,,
Scheme 4	0/02	1625	1590			
Scheme 4	8/33	1628	1615	70.85	6.93	9.21
	0/33	1026				
	9/2/	1740	1525	(71.97)	(7.05)	(9.33)
R° Y N R° I II R° Y N Y	8/34	1740	1575			
NH ₂	0/25	1615	1540	(5.00	4	16.50
$R = H, CH_3$	8/35	1630	1595	67.99	4.47	16.59
$K = \Pi, C\Pi_3$			1535	(68.25)	(4.52)	(16.76)
•	8/36	1630	1600	65.03	3.92	8.31
2a-c 11			1535	(66.47)	(3.93)	(8.61)
a , $R^6 = Me$, $R = H$	8/37	1720	1600	68.06	4.84	9.11
a, $R^0 = Me, R = H$ b, $R^6 = R = Me$		1630	1545	(67.96)	(4.83)	(9.14)
$c, R^6 = Me, R = Et$	8/38	1710	1595	72.48	5.11	7.40
d, $R^6 = Et$, $R = Me$		1635	1540	(74.85)	(5.17)	(7.70)
u, 11 - Li, 11 - 1110		1033	15-70	(17.03)	(3.17)	(1.10)

Using 3-amino-4-phenylpyrazole as the amine, 4-pyrimidone formation was not observed. As expected [17], the

Scheme 5

$$H_3C$$
 H_3C
 H_3C

heterocyclic nitrogen was involved in the cyclization and a 4-oxo-3,4-dihydropyrazolo[1,5-a]pyrimidine 12 was formed (Scheme 5). To the best of our knowledge the formation of this heterocycle has never been reported using a β -ketoamide as the starting material.

EXPERIMENTAL

The ¹H nmr spectra were recorded at room temperature on a "Tesla BS-487C 80 MHz", "Bruker AM 360 MHz spectrometer" or a "Varian EM360 A 60 MHz spectrometer" with tetramethylsilane

Table 7
4-Oxo-1,4-dihydropyrimidines 8, ¹H-NMR Data

```
<sup>1</sup>H-nmr. δ
Compound
                                        2.1 (s, 3H, 6-CH<sub>3</sub>), 2.2 (s, 3H, 2-CH<sub>3</sub>), 7.3 (s, 5H, phenyl)
8/1 [a]
8/2 [b,f]
                                        2.1 (s, 3H, 6-CH<sub>3</sub>), 2.3 (s, 3H, 2-CH<sub>3</sub>), 7.0-7.2 (m, 4H, phenyl)
8/3 [c]
                                        2.1 (s, 3H, 6-CH<sub>3</sub>), 2.3 (s, 3H, 2-CH<sub>3</sub>), 3.1 (s, 3H, N-CH<sub>3</sub>), 7.2 (s, 5H, phenyl)
8/4 [a]
                                        2.0 (s, 3H, 6-CH<sub>3</sub>), 2.4 (s, 3H, 2-CH<sub>3</sub>), 5.2 (s, 2H, CH<sub>2</sub>Ph), 7.0-7.4 (m, 10H, phenyl)
8/4A [a,f]
                                        2.1 (s, 3H, 6-CH<sub>3</sub>), 2.5 (s, 3H, 2-CH<sub>3</sub>), 5.2 (s, 2H, CH<sub>2</sub>Ph), 7.1-7.5 (m, 9H, phenyl)
                                        1.6 (s, 3H, 6-CH<sub>3</sub>), 2.2 (s, 3H, 2-CH<sub>3</sub>), 7.0 (s, 5H, phenyl), 7.3 (s, 5H, N-phenyl)
8/5 [c]
                                        1.9 (s, 3H, 6-CH<sub>3</sub>), 2.1 (s, 3H, 2-CH<sub>3</sub>), 3.9 (s, 3H, OCH<sub>3</sub>), 6.8-7.3 (m, 9H, phenyl)
8/6 [a]
                                        1.7 (s, 3H, 6-CH<sub>3</sub>), 2.0 (s, 3H, 2-CH<sub>3</sub>), 3.9 (s, 1H, OH), 6.9-7.3 (m, 9H, phenyl)
8/7 [d]
                                        1.8 (s, 3H, 6-CH<sub>3</sub>), 2.1 (s, 3H, 2-CH<sub>3</sub>), 4.3 (s, 1H, OH, 6.9-7.3 (m, 9H, phenyl)
8/8 [d]
                                        1.8 (s, 3H, 6-CH<sub>3</sub>), 2.0 (s, 3H, 2-CH<sub>3</sub>), 4.0 (s, 1H, OH), 6.9-7.4 (m, 9H, phenyl)
8/9 [d]
                                        1.7 (s. 3H, 6-CH<sub>2</sub>), 2.2 (s. 3H, 2-CH<sub>2</sub>), 7.1 (AA'XX', J = 8.9 Hz, 4H), 7.2 (t, J = 8.5 Hz, 2H, FCCH), 7.3 (dd,
8/10 [b,f]
                                        J = 5.2 \text{ Hz}, J = 8.5 \text{ Hz}, 3H, FCCHCH)
                                        1.6 (s, 3H, 6-CH<sub>3</sub>), 2.0 (s, 3H, 2-CH<sub>3</sub>), 6.8-7.4 (m, 9H, pheyl)
8/11 [d]
8/12 [d]
                                        1.6 (s, 3H, 6-CH<sub>3</sub>), 2.1 (s, 3H, 2-CH<sub>3</sub>), 6.8-7.5 (m, 9H, phenyl)
                                        1.7 (s, 3H, 6-CH<sub>3</sub>), 2.0 (s, 3H, 2-CH<sub>3</sub>), 6.9-7.6 (m, 9H, phenyl)
8/13 [d]
8/14 [c]
                                        1.5 (s, 3H, 6-CH<sub>3</sub>), 2.1 (s, 3H, 2-CH<sub>3</sub>), 3.6 (s, 3H, CH<sub>3</sub>OOC), 6.9-7.6 (m, 9H, phenyl)
                                        0.6 (t, J = 6.5 Hz, 3H, 6-CH<sub>2</sub>CH<sub>3</sub>), 0.9 (t, J = 6.2 Hz, 3H, 2-CH<sub>2</sub>CH<sub>3</sub>), 2.1 (q, J = 6.5 Hz, 2H, 6-CH<sub>2</sub>CH<sub>3</sub>), 2.5 (q,
8/16 [a]
                                        J = 6.2 \text{ Hz}, 2H, 2-CH_2CH_3), 3.5 \text{ (s, 3H, CH}_3OOC), 6.9-7.9 \text{ (m, 9H, phenyl)}
                                        1.8 (s, 3H, 6-CH<sub>3</sub>), 2.1 (s, 3H, 2-CH<sub>3</sub>), 3.0 (s, 6H, N-(CH<sub>3</sub>)<sub>2</sub>), 6.6-7.1 (AA'XX', J = 8 Hz, 4H), 7.3 (s, 5H, phenyl), 7.4-7.6 (m, 4H,
8/19 [a]
                                        0.5 \text{ (t, J = 6.5 Hz, 3H, 6-CH<sub>2</sub>CH<sub>3</sub>)}, 0.9 \text{ (t, J = 6.0 Hz, 3H, 2-CH<sub>2</sub>CH<sub>3</sub>)}, 2.0 \text{ (q, J = 6.5 Hz, 2H, 6-CH<sub>2</sub>CH<sub>3</sub>)}, 2.4 \text{ (q, Lorentz of the content of the
8/22 [a]
                                        J = 6.0 \text{ Hz}, 2H, 2-CH<sub>2</sub>CH<sub>3</sub>), 3.7 (s, 3H, CH<sub>3</sub>OOC), 6.9-7.2 (m, 5H, phenyl), 7.7 (AA'XX', J = 8 \text{ Hz}, 4H)
                                        1.7 (s, 3H, 6-CH<sub>3</sub>), 2.1 (s, 3H, 2-CH<sub>3</sub>), 7.1 (t, J = 8.55 Hz, 2H, FCCH), 7.3 (dd, J = 5.2 Hz, J = 8.5 Hz, 2H, FCCHCH), 7.5 (d, 1H,
8/28 [a,f]
                                        3'-H), 7.8 (t, 1H, 4'-H), 7.9 (t, 1H, 5'-H), 80 (d, 1H, 6'-H)
                                         1.6 (s, 3H, 6-CH<sub>3</sub>), 2.0 (s, 3H, 2-CH<sub>3</sub>), 3.7 (s, 3H, OCH<sub>3</sub>), 6.9-7.6 (m, 9H, phenyl)
8/29 [c]
                                         1.66 (s, 3H, 6-CH<sub>3</sub>), 2.0 (s, 3H, 2-CH<sub>3</sub>), 4.0 (s, 3H, COOCH<sub>3</sub>), 7.3 (s, 5H, phenyl), 7.9 (AA'XX', J = 8 Hz, 4H, phenyl)
 8/30 [b]
                                        1.5 (t, J = 5.9 Hz, 3H, CH_3CH_2O), 1.8 (s, 3H, 6-CH<sub>3</sub>), 2.2 (s, 3H, 2-CH<sub>3</sub>), 4.4 (q, J = 5.9 Hz, 2H, CH_3CH_2O), 7.1 (t, J = 8.5 Hz, 2H,
8/31 [c,f]
                                        FCCH), 7.3 (dd, J = 5.2 Hz, J = 8.5 Hz, 2H, FCCHCH), 7.9 (AA'XX', J = 8.7 Hz, 4H, phenyl)
                                         1.0 (t, J = 7 Hz, 3H, CH<sub>3</sub>CH<sub>2</sub>O), 1.5 (s, 3H, 6-CH<sub>3</sub>), 2.2 (s, 3H, 2-CH<sub>3</sub>), 4.1 (q, J = 7 Hz, 2H, CH<sub>3</sub>CH<sub>2</sub>O), 6.9-7.6 (m, 4H, phenyl)
 8/32 [c]
                                         1.18-2.18 (m, 10H, C-H cyclohehyl, J_{aa} = 9.94 Hz, J_{ae} = 2.38 Hz), 2.25 (s, 3H, 6-CH<sub>3</sub>), 2.67 (s, 3H, 2-CH<sub>3</sub>), 7.09 (t, J = 7.96 Hz, 2H,
 8/33 [a]
                                        FCCH), 7.19 (dd, J = 5.17 Hz, J = 8.55 Hz, 2H, FCCHCH)
                                         1.2 (t, J = 7.2 \text{ Hz}, 3H, OCH<sub>2</sub>CH<sub>3</sub>), 1.9 (s, 3H, 6-CH<sub>3</sub>), 2.3 (s, 3H, 2-CH<sub>3</sub>), 4.2 (q, J = 7.2 \text{ Hz}, 2H, OCH<sub>2</sub>CH<sub>3</sub>), 7.2 (s, 5H, phenyl)
 8/34 [a]
                                         1.69 (s, 3H, 6-CH<sub>3</sub>), 2.05 (s, 3H, 2-CH<sub>3</sub>), 3.38 (s, 1H, NH), 7.24 (t, J = 8.53 Hz, 2H, FCCH), 7.32 (dd, J = 5.17 Hz, J = 8.55 Hz, 2H,
 8/35 [b]
                                         FCCHCH), 7.50 \text{ (dd, J} = 2.38 \text{ Hz, J} = 7.95 \text{ Hz, } 6'H), 7.75 \text{ (d, J} = 7.95 \text{ Hz, } 1H, 7'-H), 8.23 \text{ (s, } 1H, 2'-H)
                                         1.85 (s, 3H, CH<sub>3</sub>), 2.24 (s, 3H, 6-CH<sub>3</sub>), 2.31 (s, 3H, 2-CH<sub>3</sub>), 7.11 (t, J = 8.55 Hz, 2H, FCCH), 7.29 (dd, J = 5.17 Hz, J = 8.55 Hz, 2H, FCCH), 7.29 (dd, J = 5.17 Hz, J = 8.55 Hz, 2H, J = 8.55 Hz, J = 8
 8/36 [e,g]
                                         FCCHCH), 7.31 (d, J = 0.59 Hz, 1H, 4-H), 7.35 (d, J = 2.78 Hz, 1H), 7.45 (d, J = 8.35 Hz, 1H, 7-H), 7.82 (dd, J = 0.59 Hz, J = 8.35 Hz,
                                         1H, 6-H), 7.93-7.99 (m, 4H, phenyl)
                                         1.84 (s, 3H, 6"-CH<sub>3</sub>), 2.23 (s, 3H, 6-CH<sub>3</sub>), 2.55 (s, 3H, 2-CH<sub>3</sub>); 7.15 (t, J = 8.53 Hz, 3H, FCCH), 7.29 (dd, J = 5.17 Hz, J = 8.55 Hz,
 8/37 [h]
                                         2H, FCCHCH, AA'XX', J = 7.95 Hz), 7.37 (dd, J = 1.98 Hz, 1H, 5"-H), 7.76 (s, 1H, 7"-H), 7.99 (d, J = 8.35, 1H, 4"-H)
                                         1.76 (s, 3H, 6'-CH<sub>3</sub>), 2.15 (s, 3H, 2'-CH<sub>3</sub>), 3.5 (s, 2H, 4-H and 7-H), 4.07 (s, 2H, CH<sub>2</sub>-Ph), 6.26 (t, 2H, -C(5)H=C(6)H), 6.95-7.40
 8/38 [a]
                                          (m, 12H, phenyl).
```

[a] deuteriochloroform. [b] dimethylsulfoxide. [c] trifluoroacetic acid. [d] dimethylformamide. [e] deuteriomethanol. [f] 13 C nmr (deuteriochloroform): δ 17.3 (6-CH₃), 23.3 (2-CH₃), 51.7 (CH₂), 115.3 (d, J_{CCF} = 21.5 Hz), 123.0, 123.9, 128.3, 129.6, 130.7, 132.1 (d, J_{CCCF} = 7.99 Hz), 134.5, 148.3, 160.6, 162.2 (d, J_{CF} = 246.7 Hz), 168.8. [g] 13 C nmr (deuteriochloroform): δ 11.0, 11.5 (6-CH₃), 17.0 (2-CH₃), 107.9 (d, J_{CCF} = 21.49 Hz), 114.2, 116.8, 118.0, 118.8, 122.4, 122.7, 122.9, 123.6, 124.7 (d, J_{CCCF} = 7.99 Hz), 124.9, 126.0, 127.5, 132.4, 134.1, 140.5, 152.2, 154.8 (d, J_{CF} = 246.7 Hz), 158.0, 158.3, 161.5. [h] 13 C nmr (deuteriochloroform): δ 18.7, 21. 28.0, 115.4 (d, J_{CCF} = 21.49 Hz), 121.5, 121.7, 123.1, 128.4, 128.6, 129.4, 130.0, 132.1 (d, J_{CCCF} = 8.0 Hz), 135.4, 135.6, 136.3, 140.4, 147.8, 152.2, 159.5, 162.3 (d, J_{CF} = 246.9 Hz), 164.3, 169.6. [i] The spectra were recorded on a "Bruker AM 360 MHz spectrometer".

as an internal standard. Spectral data are reported in parts per millions (δ) relative to tetramethylsilane. The ir spectra were recorded in suspension with Nujol or in potassium bromide tablets on a "Specord 71 IR spectrometer" or an "Acculab 4 spectrometer" respectively. Spectral data are reported in cm- $^{1}(v)$. Melting points were determined with an "Electrothermal digital apparatus" or a capillary melting point apparatus.

2,6-Dimethyl-4-oxo-5-phenyl-1,3-oxazinium Perchlorate (3a).

To a stirred and cooled solution of N-acetyl- α -phenylacetoacetamide (2a) (3.29 g, 15 mmoles) in dry chloroform (30 ml) and acetic anhydride (13 ml, 13.7 mmoles), was added dropwise a perchloric acid (70% solution) (1.5 ml, 17.5 mmoles). After being warmed to room temperature gradually, the mixture was stirred for 2 hours. The precipitate was filtered, washed with dry ether and dried. The perchlorates 3c and 3b are prepared in the same way using propionic anhydride for 3c and N-acetyl- α -(p-fluorophenyl)acetoacetamide for 3b.

2-Ethyl-6-methyl-4-oxo-5-phenyl-1,3-oxazinium Perchlorate (3d).

To a stirred solution of 3-oxo-2-phenylbutyronitrile (7.95 g, 0.05 mole) in propionic anhydride (29.6 ml, 0.3 mole) was added perchloric acid (70%) (3 ml). The reaction mixture was stirred at room temperature overnight. The precipitate was filtered, washed with ether and recrystallized as above.

3-(o-Methoxyphenyl)-2,6-dimethyl-4-oxo-1,3-oxazinium Perchlorate (3e).

To a stirred solution of *N*-(*o*-methoxyphenyl)acetoacetamide (2.07 g, 0.01 mole) in acetic anhydride (6 ml) was added perchloric acid (70%) (1 ml) dropwise. The reaction mixture was heated at 70° for 10 minutes. After cooling, the crystals obtained were collected and washed with acetic acid and ether.

N-Acetyl-β-phenylacetoacetamide (2a).

To a stirred solution of 2-phenylacetamide (13.5 g, 0.1 mole) in acetic anhydride (37.5 ml, 0.4 mole) was added dropwise boron trifluoride acetate (4 ml, 0.27 mole) and the mixture was stirred for 48 hours. The reaction mixture was neutralized with a solution of sodium acetate trihydrate (80 g) in water (240 ml) and was heated for 20 minutes in a water bath. After cooling the precipitate was filtered and crystallized from ethanol.

The acetamides 2b and 2c were prepared in the same way.

4-Oxo-pyrimidinium Perchlorates 6.

General Procedure.

To a stirred solution of the corresponding 4-oxo-1,3-oxazinium perchlorate (10 mmoles) in acetic acid (10 ml) the requisite amine was added at room temperature. If no spontaneous reaction occurs, the mixture is heated for 10 minutes in a boiling water bath. After complete reaction, the mixture was cooled and ether (20 ml) was added. The target compound precipitates (scratching with a glass rod is often necessary), was collected and washed with ether.

3-(o-Methoxyphenyl)-2,6-dimethyl-4-oxo-1-phenylpyrimidinium Perchlorate

A solution of aniline (0.66 g, 7.1 mmoles) in anhydrous ethanol (10 ml) was slowly added to oxazinium perchlorate 3e (2.36 g, 7.1 mmoles). The mixture was stirred for 48 hours at room temperature. Evaporation of the ethanol give a homogeneous residue, which was crystallized from acetic acid/ether.

Perchlorates 6-29 and 6-30 were prepared in the same way.

3-[N-(4-Methoxyphenyl)imino]-2-phenylbutyronitrile (10).

To a suspension of 3-oxo-2-phenylbutyronitrile (4) (1.58 g, 0.01 mole) in acetic acid (10 ml) was added methoxyaniline (1.23 g, 0.01 mole). The mixture was heated under reflux for 30 minutes. After cooling, water was added and the solution was neutralized (pH 7) with sodium bicarbonate. The precipitate was filtered and recrystallized from ethanol to yield 1.72 g (65%), mp 119°; ir (Nujol): v 3305 (NH), 2180 (C/N), 1605, 1570, 1520 (C=N and C=C) cm⁻¹; 1 H-nmr (deuteriochloroform): δ 2.0 (s, 3H, CH₃), 3.7 (s, 3H, OCH₃), 6.7-7.7 (m, 9H, phenyl).

N-Acetyl-[3(*p*-methoxyphenylamino)-3-methyl-2-phenyl]-propenamide (7).

To a stirred solution of 10 (0.52 g, 2.0 mmoles) in acetic anhydride (4 ml) was added perchloric acid (70%) (0.2 ml, 2 mmoles) dropwise. After 3 minutes, ether was added and washed with a saturated sodium bicarbonate solution. The ether was evaporated to give a red oil which was purified on a silica and column. Elution of the column with chloroform gave a homogeneous residue, which was crystallized from benzene to yield 0.09 g (15%); (7 was very unstable and was immediately used); ir (Nujol): 3225, 1720, 1665, 1645, 1620, 1595, 1425 cm⁻¹.

4-Oxo-1,4-dihydropyrimidines (8).

General Procedure A.

A solution of *N*-acetylphenylacetamide (**2a**) (10 mmoles) and the amine (10 mmoles) in aceic acid (10 ml) was heated at reflux. After 1 hour, the mixture was cooled and neutralized with a saturated solution of sodium bicarbonate in water until a basic *pH* was reached. The precipitate was filtered, washed with water until the filtrate was neutral and dried.

4-Oxo-1,4-dihydropyrimidines (8).

General Procedure B.

4-Oxopyrimidinium perchlorate (6) (10 mmoles) was stirred with a saturated solution of sodium bicarbonate in water for 1 hour at room temperature. The precipitate was filtered, washed with water until the filtrate was neutral and dried.

3-(o-Methoxyphenyl)-2,6-dimethyl-4-oxo-3,4-dihydropyrimidine (9).

A suspension of 3-(o-methoxyphenyl)-2,6-dimethyl-4-oxooxazinium perchlorate (3e) (3.01 g, 0.01 mole) and ammonium acetate (0.01 mole) in acetic acid (15 ml) was heated at reflux for 20 minutes. After cooling the mixture was diluted with water and extracted with ether (3 x 20 ml). The etheric solution was dried on sodium sulphate. Evaporation of ether gave a white residue which was crystallized from petroleum ether to yield 1.5 g (64%) of 3-(o-methoxyphenyl)-2,6-dimethyl-4-oxo-3,4-dihydropyrimidine, mp 133°; ir: v 1680, 1648 cm⁻¹; 1 H nmr (deuteriomethanol): δ 2.2 (s, 6H, 2- and 6-CH₃), 3.5 (s, 3H, OCH₃), 6.3 (s, 1H, 5-H), 6.6-7.5 (m, 4H, phenyl).

N-(β -Oxo- β -phenylbutyryl)anthranilic Acid Methyl Ester (11b).

A solution of *N*-acetylphenylacetoacetamide (2a) (2.19 g, 0.01 mole) and anthranilic acid methyl ester (1.51 g, 0.01 mole) in acetic acid (10 ml) was heated at reflux for 1 hour. Neutralization of the mixture with a saturated solution of sodium bicarbonate in water

until pH 5 was reached gave an oil which was washed with water, crystallized from ethyl acetate and recrystallized from 2-propanol to yield 4-oxo-1,4-dihydropyrimidine (8-17) 0.59 g (18%).

The filtrate was dried and the compound was recrystallized from benzene to yield 0.49 g (16%). It can be further purified by preparative chromatography (alumina chloroform), mp 108° ; ir (Nujol): v 3215 (OH), 1700 (C=O), 1620, 1585, 1530 cm-1; 1 H nmr (deuteriochloroform): δ 1.7 (s, 3H, CH₃), 3.5 (s, 3H, OCH₃), 6.9 (t, J = 7.6 Hz, 3H, 5-H), 7.2-7.5 (m, 6H, phenyl and 4-H), 7.8 (dd, J = 7.6 Hz, J = 1 Hz, 1H, 6-H), 8.5 (d, J = 8.2 Hz, 1H, 3-H); ms: m/z 311 (M⁺); 151; 119.

Anal. calcd. for C₁₈H₁₇NO₄: C, 69.45; H, 5.46; N, 4.5. Found: C, 69.07; H, 5.95; N, 4.29.

N-(β -Oxo- α -phenylbutyryl)anthranilic Acid (11a).

The yield was 16%, mp 183-184° (benzene); ir (Nujol): v 3275 (OH), 1690 (C=O), 1630, 1590 cm⁻¹; ¹H nmr (trifluoroacetic acid): δ 1.9 (s, 3H, CH₃), 4.9 (s, 1H, CH), 6.8-7.9 (m, 9H, phenyl).

Anal. Calcd. for $C_{17}H_{15}NO_4$: C, 69.86; H, 5.13. Found: C, 69.27; H, 5.17.

N-(β -Oxo- α -phenylbutyryl)anthranilic Acid Ethyl Ester (11c).

The yield was 43%; ir (Nujol): v 3320 (OH), 1700 (C=O), 1630, 1595, 1540 cm⁻¹; ¹H nmr (trifluoroacetic acid): δ 1.0 (t, J = 7 Hz, 3H, OCH₂CH₃), 2.1 (s, 3H, CH₃), 4.1 (q, J = 7 Hz, 2H, OCH₂CH₃), 7.0-7.8 (m, 9H, phenyl).

Anal. Calcd. for $C_{19}H_{19}NO_4$: C, 70.15; H, 5.84. Found: C, 70.11; H, 5.69.

N-(β -Oxo- α -phenylpentanoyl)anthranilic Acid Ethyl Ester (11d).

The yield was 33%; ir (Nujol): v 3370, 1700 (C=O), 1620, 1595, 1525 cm⁻¹; ${}^{1}H$ nmr (deuteriochloroform): δ 1.0 (t, J = 7.1 Hz, 3H, CH₂CH₃), 2.5 (q, J = 7.1 Hz, 2H, CH₂CH₃), 3.5 (s, 3H, OCH₃), 6.8 (dt, J = 8 Hz, J = 2 Hz), 7.0-7.4 (m, 6H, phenyl), 7.8 (t, J = 7.2 Hz, 1H), 8.5 (d, J = 8 Hz, 1H), 9.1 (s, 1H, NH).

6-(p-Fluorophenyl)-5-methyl-7-oxo(4H)-2-phenylpyrazolo-[1,5-a]pyrimidine (12).

Compound 12 was prepared from *N*-acetyl-1-phenylacetoacetamide (2a) by General Procedure A, mp 330° dec; ir (potassium bromide): v 1659 (C=O); 1632, 1610, 1568 (C=C and C=N), 1520 cm⁻¹, 1 H nmr (deuteriochloroform): δ 2.17 (s, 2H, 5-CH₃),

6.64 (s, 1H, 3-H), 7.27 (t, J = 8.55 Hz, 2H, FCCH), 7.37 (dd, J = 5.17 Hz, J = 8.55 Hz, 2H, FCCHC*H*), 7.42-8.2 (m, 5H, phenyl); ms: m/z 319 (M⁺), 290, 184, 133, 103, 77.

Anal. Calcd. for C₂₁H₁₇FN₄O: C, 71.46; H, 4.42; N, 13.16; F 5.95. Found: C, 71.65; H, 4.40; N, 13.14.

REFERENCES AND NOTES

- [1] M. Suesse, C. Ermische, and S. Johne, East German Patent D. D. 246, 295, 03 Jun 1987; *Chem. Abstr.* **108**, 94582q; (1988).
 - [2] A. Sitte and H. Paul, Chem. Ber., 102, 615 (1969).
- [3] C. A. Veale, G. B. Steelman, and M. M. Chow, J. Org. Chem., 58, 4490 (1993).
- [4] G. Stajer, A. Szabo, and G. Bernath, J. Chem. Soc., Perkin Trans I, 237 (1987).
- [5] G. Stajer, A. E. Szabo, G. Bernath, and P. Sohar, *Magy. Kem. Foly.* **92**, 234 (1986).
- [6] G. Stajer, A. E. Szabo, F. Ferenc, G. Bernath, and P. Sohar, *Magy. Kem. Foly*, **93**, 363 (1987).
- [7] S. N. Mazumbar and M. P. Mahajan, *Tetrahedron*, 47, 1473 (1991).
- [8] H. B. Kagan and Y-H. Suen, Bull. Soc. Chim. France, 1819 (1967).
- [9] D. J. Brown, E. Hoeger, and S. F. Mason, *J. Chem. Soc.*, 4035 (1955).
- [10] E. E. Allen, W. J. Greenlee, A. A. Ptchett, T. F. Walsh, and P. K. Chakravarty, European Patent Appl. EP 419 048, 27 Mar, 1991; *Chem. Abstr.* 115, 208010d (1991).
- [11] J. Elligboe, T. Alessi, J. Millen, J. Sredy, A. King, C. Prusiewicz, F. Guzzo, D. Van Engen, and J. Bagli, *J. Med. Chem.*, 33, 2892 (1990).
- [12] P. Herold and P. Buehlmayer, European Patent Appl. EP 407, 342, 09 Jan 1991.
- [13] F. H. S. Curd and D. N. Richardson, J. Chem. Soc., 1853 (1955).
- [14] I. Vedernikova, Yu. I. Ryabukhin, M. I. Hatin, and Yu. N. Simkina, Bull. Soc. Chim. Belg. 100, 487 (1991).
- [15] J. F. Wolf, C. J. Ely, and C. R. Heuser, *J. Org. Chem.*, **30**, 55 (1965).
- [16] G. N. Dorofeenko, Yu. I. Ryabukhin, and V. D. Karpenko, *Khim. Geterotsikl. Soedin.*, **13**, 704 (1977).
- [17] M. H. Elnagdi, Advances in Heterocyclic Chemistry, Vol 41, A. R. Katritzky, ed, Academic Press, Inc., 1987, v.41, p 321-333.